Teselări caracteristice, tipuri (regulate, neregulate), exemple

4284
Alexander Pearson

 teselate sunt suprafețe acoperite de una sau mai multe figuri numite gresie. Sunt peste tot: pe străzi și clădiri de tot felul. Teselele sau plăcile sunt piese plane, în general poligoane cu copii congruente sau izometrice, care sunt plasate urmând un model regulat. În acest fel, nu mai există spații neacoperite și plăcile sau mozaicurile nu se suprapun.. 

În cazul în care se utilizează un singur tip de mozaic format dintr-un poligon regulat, atunci există un teselare regulată, dar dacă se utilizează două sau mai multe tipuri de poligoane obișnuite atunci este un teselare semi-regulată.

Figura 1. Pardoseală cu țiglă neregulată, deoarece dreptunghiurile sunt poligoane neregulate, chiar dacă pătratele sunt. Sursa: Pixabay.

În cele din urmă, atunci când poligoanele care formează teselarea nu sunt regulate, atunci este un teselare neregulată.

Cel mai comun tip de teselare este cel format din mozaicuri dreptunghiulare și în special pătrate. În figura 1 avem un exemplu bun.

Indice articol

  • 1 Istoria teselărilor
  • 2 teselări regulate
    • 2.1 Nomenclatura
    • 2.2 Exemplul 1: teselare triunghiulară
    • 2.3 Exemplul 2: teselare pătrată
    • 2.4 Exemplul 3: teselare hexagonală
  • 3 Teselări semi-regulate
    • 3.1 Exemplul 4: teselare triexagonală
    • 3.2 Exemplul 5: teselare hexagonală contondentă
    • 3.3 Exemplul 6: teselare rombi-tri-hexagonală
  • 4 Teselări neregulate
    • 4.1 Exemplul 7
    • 4.2 Exemplul 8
    • 4.3 Exemplul 9
    • 4.4 Exemplul 10: teselarea Cairo
    • 4.5 Exemplul 11: teselare Al-Andalus
    • 4.6 Exemplul 12: teselare în jocurile video
  • 5 Referințe

Istoria teselărilor

De mii de ani, teselarea a fost folosită pentru a acoperi podelele și pereții palatelor și templelor din diferite culturi și religii..

De exemplu, civilizația sumeriană care a înflorit în jurul anului 3500 î.Hr. la sud de Mesopotamia, între râurile Eufrat și Tigru, au folosit teselări în arhitectura lor.

Figura 2. Teselări sumeriene la poarta Istar. Sursa: Wikimedia Commons.

Teselările au stârnit, de asemenea, interesul matematicienilor de toate vârstele: începând cu Arhimede în secolul al III-lea î.Hr., urmat de Johannes Kepler în 1619, Camille Jordan în 1880, până în vremurile contemporane cu Roger Penrose..

Penrose a creat o teselare non-periodică cunoscută sub numele de Teselarea Penrose. ȘIaceste sunt doar câteva nume de oameni de știință care au contribuit mult la teselare.

Teselări regulate

Teselările regulate sunt realizate cu un singur tip de poligon regulat. Pe de altă parte, pentru ca teselarea să fie considerată regulată, fiecare punct al planului trebuie:

-Aparține interiorului poligonului

-Sau la marginea a două poligoane adiacente 

-În cele din urmă, poate aparține vârfului comun al cel puțin trei poligoane.

Cu restricțiile de mai sus se poate arăta că doar triunghiurile echilaterale, pătratele și hexagonele pot forma o teselare regulată.

Nomenclatură

Există o nomenclatură pentru a desemna teselări care constă în listarea în sensul acelor de ceasornic și separate printr-un punct, numărul de laturi ale poligoanelor care înconjoară fiecare nod (sau vârf) al teselării, începând întotdeauna cu poligonul cu cel mai mic număr. laturile.

Această nomenclatură se aplică teselelor regulate și semi-regulate. 

Exemplul 1: teselare triunghiulară

Figura 3 prezintă o teselare triunghiulară regulată. Trebuie remarcat faptul că fiecare nod al teselării triunghiulare este vârful comun al șase triunghiuri echilaterale. 

Modul de a indica acest tip de teselare este 3.3.3.3.3.3, care este de asemenea notat cu 36.

Figura 3. Teselare triunghiulară regulată 3.3.3.3.3.3. Sursa: wikimedia commons

Exemplul 2: teselare pătrată

Figura 4 prezintă o teselare regulată compusă numai din pătrate. Trebuie remarcat faptul că fiecare nod din teselare este înconjurat de patru pătrate congruente. Notația care se aplică acestui tip de teselare pătrată este: 4.4.4.4 sau alternativ 44

Figura 4. Teselare pătrată 4.4.4.4. Sursa: wikimedia commons.

Exemplul 3: teselare hexagonală

Într-o teselare hexagonală fiecare nod este înconjurat de trei hexagone regulate așa cum se arată în figura 5. Nomenclatura pentru o teselare hexagonală regulată este 6.6.6 sau alternativ 63.

Figura 5. Teselare hexagonală 6.6.6. Sursa: wikimedia commons.

Teselări semi-regulate

Teselările semi-regulate sau arhimedice constau din două sau mai multe tipuri de poligoane regulate. Fiecare nod este înconjurat de tipurile de poligoane care alcătuiesc teselarea, întotdeauna în aceeași ordine, iar condiția de margine este complet împărtășită cu vecinul..

Există opt teselări semi-regulate:

  1. 3.6.3.6 (teselare tri-hexagonală)
  2. 3.3.3.3.6 (teselare hexagonală contondentă)
  3. 3.3.3.4.4 (teselare triunghiulară alungită)
  4. 3.3.4.3.4 (teselare pătrată contondentă)
  5. 3.4.6.4 (teselare rombi-tri-hexagonală)
  6. 4.8.8 (teselare pătrată trunchiată)
  7. 3.12.12 (teselare hexagonală trunchiată)
  8. 4.6.12 (teselare tri-hexagonală trunchiată)

Câteva exemple de teselări semi-regulate sunt prezentate mai jos.

Exemplul 4: teselare triexagonală

Este cel care este compus din triunghiuri echilaterale și hexagoane regulate în structura 3.6.3.6, ceea ce înseamnă că un nod al teselării este înconjurat (până la finalizarea unei rotații) de un triunghi, un hexagon, un triunghi și un hexagon. Figura 6 prezintă o astfel de teselare.

Figura 6. Teselarea tri-hexagonală (3.6.3.6) este un exemplu de teselare semi-regulată. Sursa: Wikimedia Commons.

Exemplul 5: teselare hexagonală contondentă

La fel ca teselarea din exemplul anterior, acesta este format și din triunghiuri și hexagoane, dar distribuția lor în jurul unui nod este 3.3.3.3.6. Figura 7 ilustrează clar acest tip de teselare.

Figura 7. Teselarea hexagonală contondentă constă dintr-un hexagon înconjurat de 16 triunghiuri în configurația 3.3.3.3.6. Sursa: Wikimedia Commons.

Exemplul 6: teselare rombi-tri-hexagonală

Este o teselare care constă din triunghiuri, pătrate și hexagoane, în configurația 3.4.6.4, care este prezentată în figura 8.

Figura 8. Teselare semi-regulată compusă dintr-un triunghi, un pătrat și un hexagon în configurația 3.4.6.4. Sursa: Wikimedia Commons.

Teselări neregulate

Teselele neregulate sunt cele care sunt formate din poligoane neregulate sau din poligoane regulate, dar care nu îndeplinesc criteriul conform căruia un nod este un vârf de cel puțin trei poligoane.

Exemplul 7

Figura 9 prezintă un exemplu de teselare neregulată, în care toți poligoanele sunt regulate și congruente. Este neregulat, deoarece un nod nu este un vârf comun de cel puțin trei pătrate și există, de asemenea, pătrate învecinate care nu au o margine completă.

Figura 9. Chiar dacă toate plăcile sunt pătrate congruente, acesta este un exemplu clar de teselare neregulată. Sursa: F. Zapata.

Exemplul 8

Paralelogramul acoperă o suprafață plană, dar dacă nu este un pătrat, nu poate forma o teselare regulată.

Figura 10. O teselare formată din paralelograme este neregulată, deoarece mozaicurile sale sunt poligoane neregulate. Sursa: F. Zapata.

Exemplul 9

Hexagone neregulate cu simetrie centrală teselează o suprafață plană, așa cum se arată în figura următoare:

Figura 11. Hexagoane cu simetrie centrală chiar și atunci când nu sunt teselate regulat planul. Sursa: F. Zapata.

Exemplul 10: teselare Cairo

Este o teselare foarte interesantă, compusă din pentagone cu laturi de lungime egală, dar cu unghiuri inegale, dintre care două sunt drepte, iar celelalte trei au 120º fiecare..

Numele său provine din faptul că această teselare se găsește în pavajul unor străzi din Cairo, în Egipt. Figura 12 prezintă teselarea din Cairo.

Figura 12. Teselarea Cairo. Sursa: Wikimedia Commons.

Exemplul 11: teselare Al-Andalus

Teselarea din anumite părți din Andaluzia și Africa de Nord se caracterizează prin geometrie și epigrafie, pe lângă elemente ornamentale precum vegetația.. 

Teselarea unor palate precum cea a Alhambrei era alcătuită din plăci compuse din piese ceramice de multe culori, cu forme multiple (dacă nu infinite) care dezlănțuiau modele geometrice..

Figura 13. Teselarea Palatului Alhambrei. Tartaglia / Domeniul public

Exemplul 12: teselare în jocurile video

Cunoscută și sub numele de tesellation, este una dintre cele mai populare noutăți în jocurile video. Este vorba despre crearea de texturi pentru a simula teselarea diferitelor scenarii care apar în simulator.

Aceasta este reflexia clară că aceste acoperiri continuă să evolueze, trecând granițele realității..

Referințe

  1. Bucurați-vă de matematică. Teselări. Recuperat de pe: gustolasmatematicas.com
  2. Rubiños. Teselările au rezolvat exemple. Recuperat de la: matematicasn.blogspot.com
  3. Weisstein, Eric W. „Teselare demiregulară”. Weisstein, Eric W, ed. MathWorld. Wolfram Research.
  4. Wikipedia. Teselare. Recuperat de pe: es.wikipedia.com
  5. Wikipedia. Teselare regulată. Recuperat de pe: es.wikipedia.com

Nimeni nu a comentat acest articol încă.